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Abstract—The stability of an infinite fluid layer subject to arbitrary horizontal shear flow and to arbitrary
vertical temperature and salinity distributions is considered. Linear stability analysis is used to investigate
the stability under general three-dimensional (3-D) perturbations. A first approximation Galerkin method
is used to derive the characteristic equation; then conditions for stability are obtained and the marginal
stability lines can be found. The method is applied in an example with a parabolic velocity distribution
and linear temperature and salinity profiles. The stability chart in the plane of the Rayleigh numbers is
found to include various stable and unstable regions, depending on the Reynolds number. The results
obtained here are compared with previous results derived by a general Galerkin method. A region is found
where the flow in stable for two-dimensional (2-D) transverse perturbations but unstable with respect to
general 3-D disturbances.

1. INTRODUCTION

THE STABILITY of double diffusive flows has important
implications in geophysical phenomena and engineer-
ing applications, including energy conversion systems,
and in particular the solar pond.

The stability of a stagnant fluid layer with a vertical
temperature distribution but not salinity effects has
been studied by numerous investigators, cf. the sur-
veys by Ostrach [1] and Chandrasekhar [2].

In most of the studies of thermal stability the ‘con-
ventional’ Boussinesq approximation is adopted, i.e.
the density is considered constant in the governing
equations except for the body force term in the
momentum equation. This term is represented by
assuming a linear relation between the density and
temperature. There are many cases where this assump-
tion is not justified ; Qureshi and Gebhart [3] recently
considered such a case and showed the effect of the
realistic density changes.

In treating problems of thermal or double diffusive
stability, the steady-state solution is usually assumed
to be known, and its stability is investigated using
linear or non-linear approaches. The linear stability
analysis leads, generally, to an eigenvalue problem,
which can be expressed in a simple form, at least
when the temperature gradient is constant. The prin-
ciple of exchange of stabilities holds in this case, and
instability develops in a monotonic fashion at a critical
Rayleigh number. Veronis [4] showed that for double
diffusive processes (with temperature and salinity
gradients) this principle is not always valid and the
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onset of instabilities can be associated with oscil-
lations. Exact conditions for oscillatory instability
were given by Pnueli and Iscovici [5]. The eigenvalue
problem in this case has an operator which is not self-
adjoint. Moreover, the operator in the Orr—Sommer-
feld equation, which governs instabilities in horizon-
tal shear flows, is also not self-adjoint, e.g. Orszag [6].

The present work considers all three effects: tem-
perature gradients, salinity variations and horizontal
shear flows. Magen et al. [7] summarized the relevant
literature dealing with double diffusive stability and
the influence of Reynolds number on the stability
boundary. They presented a detailed discussion of the
properties of the stability chart for double diffusive
flows, using the governing equations only, but not
their solutions for any particular case. The operator
in the corresponding eigenvalue problem is evidently
not self-adjoint, thus ruling out some more con-
ventional methods of solution, e.g. methods utilizing
extremum properties of the eigenvalues for self-
adjoint operators.

Magen et al. [8] applied the general method of ref.
{7] to derive the stability chart of double diffusive
shear flows in the Rayleigh numbers plane, using a
numerical technique based on general Galerkin and
continuation methods.

The main disadvantage of the Galerkin method is
the high order of approximations usually required,
e.g. ref. [6]. On the other hand, Nield [9] pointed out
that the first-order approximation sometimes pro-
vides very good results. The results obtained in ref.
[8] are accurate, but require significant computer time
and memory, because they involve calculations of
eigenvalues of complex high order matrices, see also
refs. [6, 10]. Moreover, when the order, i, of the Galer-
kin method is increased to achieve convergence and
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dynamic, static, for R and for Re,

respectively
D, coefficients, equations {A3)
D d/dz

E¢ coefficients, equations (15}

s By, Biot numbers, equations {4)

i.f,k  unit vectors

Ly stability condition parameters,

equations (9)

stability condition parameters,

equations (12)

A stability condition parameter,

equations (15)

axes in the abstract 1,5/, plane,

equations {15}

M., N,; elements of 3 x 3 matrices M, N,
equation (7)

Lo

[20, ng

P pressure

P, P, Prandtl and Schmidt numbers,
respectively

Re Reynolds number

R B. Re

r parameter, equations (15)

NOMENCLATURE
A, coefficients, equations (A3) 5,, 5.  Rayleigh numbers for temperature and
a coefficients of characteristic equation salinity
(8), by +ic, T,, T, temperature and salinity fields
B, coefficients, equations (A3) T, T, undisturbed temperature and salinity
By, B, Bz, By, stability boundaries: T, complex coefficients, equations (6)

t time
4 undisturbed horizontal velocity
i, 8, W, three components of the velocity field

x,¥,z Cartesian coordinates, x in the flow
direction and z in the vertical
direction.
Greek symbols
8., B, horizontal wave numbers
B Bi+B;
8, &,  parameters, equations (12)
7,7,7o parameters dependent on 8, equations
(A9)
P density
o stability parameter, equation (2)
¢,8,  trial functions, equations (6).
Superscripts
& disturbed state
) undisturbed state
(x)*  critical stability parameter.
Special symbol
Gy fyedz

better accuracy, a new eigenvalue problem must be
solved for every { and the resulis of the previous
calculations {lower ) cannot be used. Therefore, a
simpler method for the stability study would be
advantageous, even at the cost of accuracy reduction.

The present work uses a first-order Galerkin
method to obtain an approximation for the stability
chart and compares it with more accurate calcu-
lations. The basic conservation equations and linear
stability analysis lead to the characteristic equation
for the stability parameter in the form of a third-
order polynomial with complex coefficients. A new
derivation is presented for the stability conditions of
such an equation.

The stability chart is first obtained for two-dimen-
sional (2-D) perturbations in the flow direction. The
Squire transform [11] is used, together with the
general results of ref. [7], in order to find the stability
chart for arbitrary three-dimensional (3-D} dis-
turbances. The properties of the chart in an abstract
plane of the parameters are discussed for the most
general case. Examples are given for the behaviour of
the stability boundary for special cases in the plane of
the Rayleigh numbers.

The setting of the eigenproblem and the choice of
the trial functions is more different in this work than

those of ref. [8]. The results show quite good agree-
ment with the accurate stability boundary obtained
by ref. [8] and with other known results for simple
cases. Furthermore, an unstable region is found here
in the parametric space, where the flow is stable for
2-D disturbances. This result was predicted in the
general analysis of ref. [7], but could not be verified
by the high order Galerkin method of ref. [8] due to
convergence problems. Magen and Patera {12] have
recently shown, for the simpler case of a plane
Poisenille flow, that there may exist oblique
unstable disturbances while both perturbations in
the flow direction (transverse rolls) and per-
pendicular to it (longitudinal rolls) are stable.

It is finally noted that the first-order formulation
developed here cannot be extended systematically to
higher orders. Section 6 includes a detailed discussion
of the applicability and accuracy of the method.

2. DERIVATION OF THE CHARACTERISTIC
STABILITY EQUATION AND THE STABILITY
CRITERIA

Reference [7] includes a derivation of the governing
equations for small perturbations superimposed on
an undisturbed double diffusive steady flow state. The
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velocity, pressure, density, temperature and salinity
fields (V, p, p, T\, T,) are expressed as

¥ = ¥+ V = a()i+ i+ o+ wh);
p=ptp; p=ptp; T=T@+T; j=12
6

where the undisturbed distributions are denoted by
(°). Horizontal flows are considered, with the coor-
dinate x in the flow direction and the steady state
distributions # and 7', are assumed to depend on the
vertical coordinate, z, only. The perturbations, taken
to be small, are expressed in the form

{V(xaya 2, t) s Tj(x’y7 2z, l) ;p(x7y’ 2, t)}
= {V(2); T)(2); p(2)} exp [i(B:x + B,y) +01l;
i=12

where o is the stability parameter and f, and §, are
horizontal wave numbers in the flow direction and
perpendicular to it.

The variables in equations (1) and (2) are introduced
into the continuity, momentum, energy and diffusion
equations and use is made of the equation of state in
the form of a linear relation between the density and
the temperature and salinity. The Boussinesq approxi-
mation is adopted and a linear stability analysis is
performed, whereby second-order terms are neglected
in the governing equations. The pressure terms are
eliminated and the variables are normalized in a
standard way (see equation (8) in ref. [7] and also
ref. [8]), leading to the dimensionless perturbation
equations

(D*—p*—iRP#)T,+DTw=0oP,T;; j=1,2
—{(D*~p»*~iR[(D*— ?) — Dilw
+B%(S,T,—S,T,) = —a(D*—fH)w
3)

where D =d/dz, f>*=p?+pB2, R=h, Re, Re is
the Reynolds number, based on the volumetric flow
rate

d
Q=f udx
0

(here #(z) is the dimensional velocity); P, , are the
Prandtl and Schmidt numbers and S, , are the Rayleigh
numbers for temperature and salinity: P;= v/K;;
S; = gAT,x,d’[vK;,. Here v is the kinematic viscosity,
K, the thermal and concentration diffusivities, g the
acceleration of gravity, AT; the characteristic tem-
perature and salinity differences, «; are the respective
expansion coefficients and d is a characteristic length
(the depth of the layer).

It is noted that the symbols used here for the con-
centration field, the Schmidt number and the Rayleigh
numbers differ from those used conventionally. The
main reason for it is convenience of presenting the
equations and results in a more compact manner.

The boundary conditions are given by

w=0; D'w=0 freeboundary

w=0; Dw=0  solid boundary
DT;+h,T;=0 upper boundary,j = 1,2
—DTj+h,jT,- =0 lowerboundary,j=1,2

G

where h, and h, are Biot numbers for temperature
and salinity (or dimensionless heat and mass transfer
coefficients).

Equations (3) and (4) constitute the mathematical
definition of the stability problem ; it is an eigenvalue
problem, set by three ordinary differential equations
with complex coefficients. This problem is not self-
adjoint and the stability parameter o cannot be
assumed real. The stability criteria, for the eigenvalue
with the largest real part, are

Re (o) <0 stability;

Re(6) =0 marginal stability. (5)

For given #(z), T1(z), T1(2), the flow is stable when
the combination of the physical parameters of the
problem {huj, h, P, S;, Re} guarantees that condition
(5) is satisfied for every mode (i.e. for every wave num-
ber fand B, in the range 0 < f < 00,0 < B, < B).

A first approximation Galerkin method is used here
to derive the characteristic stability equation from the
perturbation equations (3). Let the eigenfunctions be
expanded in a series of a complete sequence of trial
functions that satisfy the boundary conditions. Now
restrict the treatment to the first elements of the series,
ie.

w=w0(2);

where w,, T;, are complex constants and the functions
&(2), 6(2), satisfy boundary conditions (4).

The Galerkin method, cf. Mikhlin [13}, consists of
the substitution of equations (6) into equations (3)
and the requirement that the first of equations (3) be
orthogonal to 6,(z), the second one be orthogonal
to 0,(z) and the third be orthogonal to ¢(z). These
operations result in

T,=Tu0/2) 6)

Ty, T,
[NI{ T, = o[MI{T, p = N-ocM|=0 (7)
Wi W,

where the elements of the (3 x 3) matrices N and M
are defined in the Appendix. Equation (7) is the
characteristic equation for ¢. It is an algebraic
equation of the third order with complex coefficients,
which can be written as

c*+a6t+ao+a; =0 ®)

where the coefficients a; are also listed in the
Appendix. Stability conditions (5) require that
the three roots of the characteristic equation (8) have
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negative or zero real parts. These conditions lead to
the following relations :}

L >0,L,>0,L;>0 definite stability (9a)

L >0L,>0,L,=0 marginal (9b)
L,>0,L,=1L;=0,L,>0 stability lines 9¢)
L=L,=L,=0 additional (9d)
conditions
(see below)
where (see also the Appendix)
Li=by; Ly=cy(c;b,—c)+bib,—bbs;
Ly= L%LA_(LZCZ+2b1LS)2 (10)

L,=c}+4bb;; Ls= bs(cxbl“‘cz)_bfcb
b.=Re(ay); e, =Im(a); k=1,2,3.

It is noted that in case (9a) for definite stability all
three roots of equation (8) have negative real parts.
In case (9b) the equation has one root with Re () = 0,
Im (¢) = Ls/L, and the two other roots have negative
parts. In case (9¢) the characteristic equation has two
roots with zero real parts and imaginary parts given
by (—c,%+/L,)/2L, and the negative real part equal
to —L,;. In this case the additional condition L, > 0
has to be used, which is identically satisfied in cases
(9a) and (9b), see equations (10) for L,. Finally, in
case (9d) all three roots have no real part.

At this stage it is possible to extract some
intermediate results.

(1) The first condition in equations (9a)-(9c),
namely L, > 0, is identically satisfied as can be seen
from equations (10) and (A1)-(AS). It also follows
that case (9d) is irrelevant because L, is always
positive. This means that condition (9) reduces to

L,>0,Ly>0(L; =>0) definite stability (11a)
L,>0,L,=0(L,>0) marginal } (11b)

L,=L;=0,L,=20 stability lines. (11c)

(2) Parameters L,, L, and L; are linear functions
of Rayleigh numbers S, and S,, see equations (A5),
(A3) and (Al).

(3) As observed from equations (A5), L,, L, and
L, depend on R? and therefore on Re”. This means
that the stability conditions also depend on Re?.

(4) The multipliers of R? in equations (AS) for L,
and L, are non-negative (details are given by Magen
[15]). The importance of this observation is clarified
below.

Finally, L,, L, and L, can be found from equations
(Al), (A3) and (AS). Introduction of the results into

T A complete procedure of obtaining equations (9), which
are a generalization of the Routh-Hurwitz conditions for a
complex polynomial, appear in Gantamakher [14]. Equi-
valent conditions have been derived in a simpler form by
Magen [15] for the third degree polynomial considered here.
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Fi1G. 1. Static marginal stability boundaries: (a) in the L
L,, plane; (b) in the Rayleigh number plane, §,—S..

equations (11) yields the stability conditions for every
special case.

3. MARGINAL STABILITY LINES AND
STABILITY REGIONS

3.1. Static stability

For the case of no initial flow, Re= R =0, it is
found from equations (10), (A4) and (AS) that the
relevant parameters L reduce to

Lolg—o = Lyo = 8:(B) —£21(B)S 1 +&22(B)S>

Lylgoo = Lyo = 84(B) —£41(B)S1 +E42(B)S2
L= L%oLm; Lso=0

(12)

where coefficients J; and ¢, , defined in equations (A6)
depend only on wave number f§. Stability criteria (11)
can now be written as

L,o >0, Ly >0 definite stability  (13a)
L,y >0, Ly, =0 marginal (13b)
L,y =0, Ly, =0 stability lines. (13¢)

This means that in the plane L,L,, the static stab-
ility domain is the first quadrant and we denote it by
ST, The static instability domain (the three other
quadrants) are denoted by UN,.,. The boundary
between them (positive parts of the axes L,,, L,,) is
denoted B, see Fig. 1(a).

The marginal stability boundary B, is now trans-
formed to the Rayleigh number plane. The relations
between S1—S, and L,,—L,are linear and they include
the wave number, §, cf. equations (12) and (A6). Thus,
for a specific B, B, in the plane S-S, is also formed
by the intersection of the two straight lines, L,, =0
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and L,, =0, see Fig. 1(b). However, the stability
condition for any B is sought. Therefore, we seek
the envelope of the family of lines B, (S, S, B)
depending on the parameter g, i.e.

(14a)

ék,(ﬂ)sl —ﬁkz(ﬂ)Sz = 51‘(3)
}k =24 (1av)

¢k, (BS =&, (B)S: = 8i(B)

where the prime denotes differentiation with respect
to §. The wave number 8 can be eliminated between
equations (14) and the static stability boundary BX,
is thus obtained as the envelope, shown qualitatively
in Fig. 1(b).

3.2. Dynamic stability

The dynamic stability boundary for cases with
initial flows (Re # 0), is determined from equations
(11). This marginal stability curve (L; =0, L, > 0,
L, = 0) depends on both wave numbers g and , for
any specific value of Re (R = Ref,). We are inter-
ested, however, in the general stability margins, which
are independent of f and f,, i.e. the stability boundary
for any arbitrary perturbation. The Squire trans-
formation will now be used, whereby only 2-D dis-
turbances in the flow direction (f,=f) are
considered. The marginal stability line, B,,, will first
be constructed for this case and for a specific wave
number B: R = B Re. Then the results of ref. [7] will
be applied to derive the line B, for general 3-D
perturbations.

According to ref. [7], the general stability chart
for any Re includes ‘true’ segments of the marginal
stability curves for 2-D perturbations, where these are
the most unstable. The ‘dummy’ parts of the curves
(where 2-D disturbances are stable but 3-D need not
be stable) are excluded and replaced by the envelope
of these lines and by parts of the static stability lines.

The line By, is determined from equation (11b) as
L; = 0 for a specific value of R. Additional conditions
are also imposed, namely L, > 0 and L, > 0. It can
be shown that the coefficients of Re? in the expressions
for L, and L, equations (A5), are non-negative.
Therefore, an increase of Re will cause movement of
the boundary lines L, =0, L, =0 into the region
UN,. in the plane L,;L,,, see Fig. 1(a). It seems
as if this result indicates an increase of the stability
domain, determined by the lines L, =0, L, = 0 and
L, =0. According to ref. [7], however, an increase
of Re cannot stabilize unstable states, thus the lines
L,=0, L, =0 (Re #0) are ‘dummy parts’. There-
fore, instead of inequalities L, > 0, L, > 0 one should
use L,q > 0, L,, > 0, and only these parts of the line
B, which belong to the first quadrant of the plane
L, L, should be considered.

The transition from B,, to B,y and the trans-
formation to the physical plane S-S, are now dis-
cussed for the special case of identical boundary con-
ditions for temperature and salinity.

529

4. THE STABILITY CHART FOR THE CASE OF
IDENTICAL BOUNDARY CONDITIONS FOR
TEMPERATURE AND SALINITY

Consider the special case where the boundary con-
ditions for the temperature and the salt concentration
in equations (4) are identical. There is no restriction,
however, on the initial distributions T,(z), T.(z),
which need not be the same. We choose for this case
identical trial functions for the temperature and salinity
perturbations: 0,(z) = 0,(z) = 0(2).

In order to simplify the treatment of the equations,
the parameters L,q, L4, L3 and R are transformed
using the relations

Lyo = LoEy(B);

Ly = LE;(B);

Iy = (L +2r) (4o +1%)
—r (Lo +14sg—14+2r%)?

Ly = 140E4(ﬂ)}
R2="2E,(ﬂ) (15)

(16)

where coefficients E(8), defined in equations (AS8),
are all positive, and equation (16) has been obtained
by introduction of equations (15) into equations (10)
for L,.

The result of the derivation in the previous section
was that the dynamic marginal stability line, B4, is
determined by the conditions /; =0, [,, 20, [,, = 0.
The expression for /,, equation (16), does not include
the physical parameters of the system. Therefore, it is
more convenient to first construct the general stability
chart in the /,4-14, plane, which is the same for all the
different cases, and only then to transform it to the
Rayleigh number plane S,—S,, using equations (12)
and (15).

Section 4.1 and Figs. 2 and 3 include a detailed
derivation of the stability chart in the former plane
and a discussion of its properties. The marginal stab-
ility lines, B,q, are first constructed for various values
of R (or r). Then the envelope, By, of the family of
these lines is found (the line B, is the stability bound-
ary for all values of Re). Finally, margins B, are
obtained, which determine the stability for specific
values of Re.

4.1. Construction of the stability boundary in the
abstract plane 1,514,

The marginal stability line B,y(/; = 0) for a specific
wave number B, is obtained in the plane /,4~/,, from
equation (16) as

bo = o +r) Fr—1/(JUso+r) F L.
)

Asindicated in the previous sections, the static stab-
ility region, ST, is the first quadrant in the plane
Lyo—140 (Or Lyg—L,e). Stable flows cannot correspond
to points outside of this quadrant and those parts of
B,4, equation (17), not belonging to it are ‘dummy’
parts.

Different marginal stability curves correspond to
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Cao

FiG. 2. Dynamic marginal stability boundaries B,, for various values of r (or R) in the /,5-/;, plane.

FiG. 3. Dynamic marginal stability boundaries By, for various Reynolds numbers and their envelope B,
in the 1,55, plane.

different valwes of r, defined in equations (15), as
shown in Fig. 2. When r < 1/2 the boundary B, con-
tains two branches of the line /, = 0 (equation (17)),
e.g. DC and BH for r = r,. As r — 0 the right-hand
branch of line (17} approaches the positive /,, axis
from point A in Fig. 2, while the left-hand branch
tends to merge with the broken line QOA on both
axes; thus the static stability boundary is recon-
structed for r = 0 (and R = 0).

In the limiting case » = 1/2, the left-hand branch of

equation (17) passes through the origin and does not
contribute to the stability boundary, which consists
of the positive /,, axis, the part 0 </, < 2 on the
14, axis and the right-branch of equation (17) (for
r=r, = 1/2), see Fig. 2.

When r > 1/2 line B,, has only one branch in the
first quadrant, e.g. GE for r = r; in Fig. 2.

The stability region for a specific value of r ~ Re
lies above the line B,4 for this . Now consider the
region S in Fig. 2. The mathematical treatment for
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2-D disturbances yields the conclusion that this region
is stable for r; and unstable for r,, with r, <rs.
According to the general results of ref. [7] (see also
ref. [12]), any point in this region is unstable for 7
with respect to general 3-D perturbations but stable
for 2-D disturbances both in the flow direction (trans-
verse rolls) and perpendicular to it (longitudinal
rolls). It then follows that part GG’ of B,, (for r = rs)
is a ‘dummy’ part. In order to separate the ‘dummy’
and ‘true’ parts of B,y, and to derive the stability
margin B4 for a specific Reynolds number and 3-D
disturbances, we proceed by constructing the
envelope, B,, of the family of lines B,; with r as a
parameter. It is obtained from equations (16) and (17)
by the formal requirements

dly _

Ll lag, 1) =05 22=0 (18)

leading to the envelope equation, B,

Lo = (Jlse£1)?/2  envelope, B,. 19)

The value of r on the envelope is given by

r’= ¢120\/140/2 = T‘\/140(\/140i1)2/4- (20)

The marginal stability curve By, equation (19) is a
parabola in the plane /,/,, e.g. the line DBCAGI in
Fig. 3. Branch IHG is meaningless because 72 on it is
negative (see equation (20)). Therefore, the con-
tinuation of the marginal stability curve is the positive
1,0 axis, i.e. GW. The region above the line Bj is
stable for any value of Re and for any general 3-D
disturbance and is denoted ST,.

It can be seen from equation (20) that the parameter
r has a maximum on the envelope (point L in Fig. 3)

dr?

374—0=0=>rc= 1/27

21

As we move along the line B, from point D to
point A, r decreases to zero; then from A to L r
increases to the value r_ and from L to G r decreases,
again, to zero. As mentioned above, r* becomes nega-
tive as we continue to move along B, towards points
Hand L

For a value of r lower than r,, say r,, the marginal
stability line B, has two branches RFKEP and MCU,
touching the envelope B, at three points F, E and C.
When r > r, the line B,, is tangent to B, at a single
point, e.g. point B of branch NBYV for r,.

From the stability chart in Fig. 3 and from the results
of ref. [7] it can be seen that the segments of the lines
B,, lying between the envelope, By, and the axes /5,
1,0 are ‘dummy’ parts, e.g. parts RF, EP and MC for
r=r;, and NB for r = r;. It is interesting to follow
now a complete path of a marginal stability line, B,,,
for a specific value of Re, say Re,, which corresponds
to r, (Fig. 3). According to the construction procedure
already described, the line consists, first, of the ‘true’
parts of the stability boundary, B,,, for 2-D per-
turbations, i.e. segments where these are the most

dangerous, or easiest to excite. The line B,, continues
on the envelope or the /,, axis from the point where
the line B4 (for Re,) is tangent to these lines.

Thus B, (Fig. 3) includes the ‘true’ part UC, then
the segment CAE on the envelope B,, the ‘true’ seg-
ment EKF, another part —FG, of the envelope, and,
finally, the segment GW on the /,, axis, which is a
part of the static stability line.

The results of this section based on the general
results of ref. [7], can be summarized now for the
stability chart for general 3-D perturbations.

The whole plane /,4—/,, is divided into four different
parts for any specific wave number § (Fig. 3).

(1) Unstable region UN,,,, : the whole plane except
for the first quadrant. In this region all points are
unstable for all values of Re.

(2) Stable region ST,: above the line B,; in this
region all points are stable for all values of Re.

(3) Dynamic stability region ST, for r ~ Re: this
region is the domain between lines CD and CU and
the area FKELF, when it exists (i.e. for r, <r.). In
this region all points are stable for Re < Re,.

(4) Dynamic unstable region ST, for r ~ Re: the
area QACU and the part AOGFKEA forr, <r, (or
the whole area GAO, for r, > r.). In this region all
points are unstable for Re > Re,.

This concludes the derivation of the stability chart
in the abstract /,,—I4, plane and the discussion of its
properties. As mentioned above, the chart for a spec-
ific value of wave number B, is general and does not
depend on the physical parameters of the problem
(for the case of identical boundary conditions for
temperature and salinity). The construction of the gen-
eral stability chart in the S-S, plane (independent of
wave number f) by transformation from the /,4-I4,
plane is described in Section 4.2. The straight lines HJ
and JI in Fig. 3 represent the axes S, = 0and S, = 0.
They are obtained from equations (12) and (15) in the
form

Sy = 0= 13080,/ Ey = 1Li0€22/ E4+0,84:— 0485,

(22)
Sy =0=10841/Ey = 140821/ Es+ 0,84 ~0,4¢,,.

Envelope B, is tangent, by construction, to all the
lines B,,, and is also tangent to the four straight lines
120=O,140=0,S| =0,S2=O.

4.2, The stability chart in the Rayleigh number plane
S l‘S 2

Relationships (12) and (15) between /5, /0 and S,
S, are used to transform the marginal stability curves
from the abstract /,,—/,, plane to the physical Ray-
leigh number plane S,—S,. The expressions are linear,
with coefficients &, 0 and E which depend on wave
number f. Substitution of equations (12) and (15)
into equations (13) and using also equations (A6)
yield the equations of the static and dynamic marginal
stability lines B, and B, (in terms of S, and S,)
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@) 811 P3P +70)—San:PHP2+7,)
=P+ Py} (Py+y0) (Py+7y0)

Pi+y,

(P,—Py)

B rest

(b) S\ =8 =7;18, <y

(23)

@ SinPi=[/(SmPhH+J@PI—P)

Bs= by Sml—Sznz=?'rlez<v—~i
’ (Pi—PYH

(24

where coefficients 7, #1,, y and y,, defined in equations
(A9), are independent of S, S,, P,, P, and Re. y and
yo depend on the boundary conditions (identical, here,
for temperature and salinity), the shape of the trial
functions ¢(z) and 8(z) and wave number B. , and
1, depend only on ¢, 8 and the initial (undisturbed)
distributions 7. B, does not depend on #, because it
is the envelope of the family of marginal stability lines
with Re as a parameter.

We seek now the general stability boundary for any
arbitrary perturbation, i.e. the envelope of the family
of the marginal stability lines with f as a parameter.

As mentioned above, #, and #n, do not depend on
B. Therefore, part (b) of the static stability margin
B, equations (23), is a straight line with a slope
which is not a function of 8. The envelope of these
lines, B, (b), is the straight line, with the same slope
and for a critical value, §*, of the wave number (Fig.
1(b)). This result has also been obtained by Nield {16].

The second part of B,., equations (23), moves and
rotates when B varies. The envelope of these lines is
also shown in Fig. 1(b), and the marginal static
stability line, BX,, is the combination of these two
envelopes, as shown in the figure.

Part B, (b) of the dynamic stability boundary, equa-
tions (24), is identical to B, (b). Part B, (a) is an
upper branch of an inclined parabola. As can be seen
from equations (23) and (24), the lines B, and B, (b)
depend on f# through y only. Therefore, the limiting
positions of these three lines is obtained by sub-
stitution of the minimal value of y, denoted by y*, into
equations (23) and (24), i.e.

Brtst (b) = Brest (b)|y=y‘ 5 Bcf = Bdl','=y" (25)

As y* is the minimum function y(f), it is found by the
condition dy/df = 0. This relation and equations (A9)
lead to the following equation for the critical wave
number, f* (corresponding to y*)

K(DO)?> +h,0%(1) +h,0%(0)
8%>

_KDY)*) +h,02(1)+h,6%(0) <(D*¢)*>

0> <>

This equation has a single real positive root, denoted
by B* and y* is given by equations (A9) with

{(D¢) 2>]

#+b [ @

=0. (26)

y* = y(B*). The line BE,, (a) is found from equations
(14) using equations (23)

~

B _ P+ P <P2+V0)2
1 = P,_P, P,
¥
x [)’+(P1+Vo)_/’:|
Bl (@) = < )
S _P2+P1<P1+70>2
22 = P,—P, —P1

x |:'}’+(P2+)’0) y—,}
L Yo
This is a parametric representation of the line B, (a)
in the plane S-S, where y =dy(B)/df?; y,=
dye(B?)/dB* In the same way the line B, can be
found as the envelope of the family of lines B%(f).
This operation requires a numerical procedure ; how-
ever, a good upper bound approximation for the lines
Bk, (a) and B¥, can be obtained by substitution of
B* instead of § into equations (23), since the depen-
dence of y, on f§ is much weaker than that of y.

A lower bound to the stability boundary B, can
also be found. Examination of equations (24) shows
that the inclination angle, , of the parabola axis is
independent of wave number, B. Also, since the first
trial functions do not change their sign, thus by using
the mean-value theorem, we obtain

t _ [DTZ(Z)]av Pl 2
& = BF, Ol \P:)

This result for the lower bound has also been obtained
by Bouscher et al. [17].

A general qualitative description of the stability
chart in the plane S,—S, is quite impossible, because
of the dependence on many physical parameters and
boundary conditions. Section 4.1 includes, however,
a discussion of the chart in the abstract plane /-
{40, Where the results are general and can be applied
regardless of the values of these parameters. As men-
tioned above, a domain in the parametric space is
found where the flow is stable for longitudinal dis-
turbances in the flow direction but unstable for gen-
eral 3-D perturbations, see region S in Fig. 2. The
results of this section and Section 4.1 are used to
investigate the stability chart in the §,—S, plane for
some specific examples.

(28)

5. EXAMPLES

The method developed here is demonstrated by its
application to two special cases and the comparison
of the results with known solutions.

3.1. Linear initial distributions and ideal boundary
conditions

The temperature and salt concentration are
constant on the two boundaries which are free, see
equations (4)
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hh=h=0; DF,=DF,=1; a@z=1
T)=T,=0; w=0; D’w=0 at z=0,l.
(29

In this case, the operators in equations (3) have con-
stant coefficients and the eigenfunctions of the first
mode are sin 7z. When these are introduced instead
of the trial functions, the characteristic equation (8)
is exact, and can be written as

(0+iR)’(x* + %) + (6 +iR)*(n* + §%)°
X (P, Py+P,+P))+(@+iR)[(n*+B>)* (P +P,+1)
~ B8\ P, —S,P )]+ (12 +B7)

x[(=*+B%)° —B*(S, —S,)] = 0.

This equation is of a third order in (¢ +iR) (and not
in ¢ only) and has real coefficients. Therefore, Re (or
R) affects here the character of the instability, i.e.
change it from monotonic to oscillatory and vice
versa, but cannot affect its onset. A similar result has
been obtained by Pnueli and Zvirin [18]. The dynamic
marginal stability boundary is identical to the static
one, B, = B,; = B,. Its shape, given by equations
(23), coincides with the exact well-known form, e.g.
Nield [16]. In this case

_ (7t2+ﬂ2)3 .

R
Gh
* = n/\/2 = 2.22144; y* = 27n*/4 = 657.511.

(30

yin

Yo=1;

5.2. Realistic boundary conditions

Rigid lower and free top boundaries with a para-
bolic velocity distribution ; constant temperature and
salinity on both boundaries and linear initial dis-
tributions in between. These are written as

h,=h=cw; DT (2)=DT, (2 =1
i#(z) = 3Q2z—12%)

T,=T,=0;, w=0; Dw=0at z=0
T,=T,=0; w=0; D’w=0at z=1.

(32)

As can be seen by comparison with the previous exam-
ple, the change of the conditions from free to rigid
boundary leads to a much more complicated problem :
the coefficients in equations (3) are not constant now,
and it is impossible to obtain an exact closed form
analytical solution, cf. Chandrasekhar [2]. Let us
choose the trial functions as the simplest polynomials
satisfying the boundary conditions

0=z(1-2); ¢ =7z*(3~5z+2z%). (33)

Inserting these into equations (A9) and (26) we obtain
y = (198% 443262 4+4536) (B2 +10)/198>

_ (198+216) (8*+10)
Yo = 196" + 4325 +4536)

n = 507/532;

5"%=0=>ﬁ*=2.670;

7*/n = 1140. (34)

The ratio y*/n represents the critical Rayleigh number
for the case of a single gradient: S, = S, = y/n, for
S;=0and S, =8, =7y/n, when S, =0, see equa-
tions (24). Exact values of S, =1100.657 and
B* = 2.68 have been obtained by Chandrasekhar [2]
(for the case of thermal stability without salinity
effects). Hence the present method yields a good
approximation—within 3% of the exact solution.

It is noted that unlike the previous example, the
static and dynamic marginal stability curves here
are different. The former is obtained from equations
(23) and (34) for various values of wave number, f.
The results are listed in Table 1, which also contains
accurate values of points on the static stability lines,
derived by general Galerkin and continuation
methods in ref. [8]. As can be seen, the present first-
order approximation yields quite good results; the
maximum deviation in Table 1is 7.2%. The agreement
between the results becomes better when f increases
and also for large Rayleigh numbers S, and 5.

The dynamic marginal stability lines for various
Reynolds numbers, Re, were obtained by the method
outlined in Section 4. These lines must be derived
numerically and a computer program was developed
for it. The results presented here are the envelopes of
the marginal stability families of curves with  as a
parameter, i.e. the stability boundaries for all possible
wave numbers. Figure 4 includes a comparison of the
present results with those of the accurate derivation
of ref. [8], for Re = 10°. The first approximation
underestimates the accurate solution; the deviation
between the two lines increases with S, and §,, and
its maximum in the range of the figure is 9%.

The stability boundary also includes envelope B, of
the dynamic marginal stability lines for all values of
Re. The parabola B, is obtained from equations (24)
and (34).

Figure 5 includes the stability chart in the Rayleigh
number plane. In this example P, = 7, P, = 700 and
B = B* = 2.670, see equations (34). The static (rest)
stability margins are the straight lines GO and ON.
The dynamic stability boundaries for the various
indicated Reynolds numbers have been obtained
by the numerical procedure mentioned above. The
envelope, B,, of these lines is the parabola GLAB
shown in Fig. 5.

Figure 6 is an expansion of region NAB of Fig. 5,
illustrating the effects of the Reynolds number on the
stability nature of the flow. Envelope By is the line
OB’ in the figure, representing the dynamic stability
margin : the region below it is stable for any Re. The
static stability line is ON’ (for Re = 0), above which
every state is unstable. The stability chart in Fig. 6
also includes lines illustrating typical states of solar
ponds. Salt water ponds are considered, where the
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Fic. 4. The dynamic marginal stability line for Re = 10°

(comparison of the present first-order approximation and
the accurate results of ref. {7]).

temperature difference is taken as AT; = 60°C. Obvi-
ously, AT, should be the highest possible for
maximum efficiency. It is well known that a bottom
layer temperature of about 95°C can be reached. The
lines in Fig. 6 represent ponds of various depths for
two values of the salinity difference (100 and 300 kg
m™?). These lines are linear, because the ratio S,/S,
does not depend on 4.

As can be seen from the figure, when the depth, d,
increases, the critical Reynolds number increases too.
In the range of d between 0.8 and 2m, doubling the
depth causes an increase of Re,, by a factor of about
3. Thus, if the same velocity is kept in the pond while
the depth is increased, there is no danger of desta-
bilizing the flow. Depth values below, say, 1 m, should

| I76l—
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be avoided because the pond would be too close to
the marginal stability line.

6. DISCUSSION

This paper describes a technique for the con-
struction of the static and dynamic stability chart of
double diffusive shear flows, based on a first approxi-
mation Galerkin method.

As mentioned above, this relatively simple method
is not generally accurate. Its limitations and advan-
tages are discussed here and an outline is suggested
for the proper utilization of the procedure and results.

It should be emphasized that a first-order Galerkin
method may lead, in some cases, to results which are
not only inaccurate but utterly wrong. For example,
the first-order approximation predicts that plane
Poiseuille flow is always stable, while it is known,
based on higher order analyses, that instabilities do
exist, cf. refs. [6, 10]. Thus great care must be taken
when a first-order Galerkin technique is attempted.
The method can be used effectively for certain
purposes and under several conditions; it is
recommended, however, to support the results by
other, more accurate, means as explained below.

The first approximation Galerkin method is shown
below to be useful for the following main applications.

(a) First approximation, as a preparation for more
accurate calculations.

(b) Parametric study of the stability behaviour of
the flow, when it yields reasonably accurate results.

(c) Derivation and evaluation of the general quali-
tative form of the stability chart.

As pointed out in refs. [6, 7, 10], the accurate solu-
tion by a general Galerkin method involves high-order
complex matrices for cases of non-self-adjoint oper-
ators with complex variable coefficients. Thus the
numerical determination of the eigenvalues is con-

Py7 N
Sy
Py=700 B
STd
nzel w 1 ] 1 1 1 |
-400 0 400 800 1200 1600 2000 2400 2800
Sp

FiG. 5. Marginal stability boundaries for various values of Re in the Rayleigh number plane, obtained by
a first approximation Galerkin method.
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F1G. 6. The stability chart in the Rayleigh number plane (expansion of region NAB in Fig. 5), including
lines representing states of typical solar ponds.

sidered a difficult task. Moreover, problems such as
‘spurious’ eigenvalues may be encountered. On the
other hand, for the derivation of the stability chart,
only one eigenvalue is actually required—that with
the largest real part. The approach developed in ref.
[8] simplifies the analysis by using 2 combination of
the methods of ‘vector iteration with shift” and ‘con-
tinuation’. The effectiveness of this approach strongly
depends on the initial guess for the marginal stability
curves. The first approximation method described
above provides, indeed, a good initial guess. It is fur-
ther noted that this method is analytical and does not
require numerical computations to obtain the eigen-
values. The marginal stability lines have been derived
directly from the coefficients of the characteristic stab-
ility equation. The calculations of the eigenvalues in
ref. {8] have been performed very carefully in order to
isolate a single one with the largest real part and
determine it accurately on a marginal stability line.
The continuation method enables, then, progressive
‘drawing’ of the line by investigating the variation of
the eigenvalue with respect to the system parameters.

Even the simplified and efficient method of ref. [8]
to derive the stability chart by a general Galerkin
method is still quite complicated and expensive, i.e.
it requires significant computer time and memory.
Therefore, if a reasonably accurate derivation by a
first approximation is available, such as the method
presented here, a parametric study and an inves-
tigation of various phenomena and effects can be per-
formed much more conveniently. It is reminded,
again, that the accuracy of the first approximation
must be examined by spot-checking (at least).

It has been shown here and in ref. [9] that for certain

cases of boundary conditions the method yields the
exact solutions, because the trial functions are the
exact eigenfunctions of equations (3). Furthermore, if
the operator of these equations is self-adjoint, there
exists, then, a variational principle for the problem.
The Galerkin procedure is identical to the Rayleigh—
Ritz method, and the extremum properties of the
eigenvalues can be utilized. For more complicated
cases such as the realistic boundary conditions, the
present method sometimes yields good approxi-
mations, as has been shown by a comparison with the
accurate derivation of ref. [8]. It can be deduced that
the present method would lead to good approxi-
mations when the parameters appearing in equations
(3) are in the neighborhood of those leading to self-
adjoint operators, and when the Reynolds number is
small and the initial temperature and salinity dis-
tributions are close to linear.

The third application of the proposed method is the
qualitative derivation and evaluation of the general
properties of the stability chart. As pointed out above,
an accurate derivation is quite complicated and
expensive. The chart consists, generally, of various
regions and numerous marginal lines of static and
dynamic stability. Without preliminary information
of at least several main regions of the chart, it would
be extremely difficult to know what lines and zones to
search and where (approximately) to start the pro-
cedure of finding them. The first-order Galerkin
method developed here provides the tool for such an
initial general outline of the stability chart.

An example for a peculiar stability phenomenon is
the result of a flow which is stable for 2-D disturbances
in the flow direction (transverse rolls) and per-
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pendicular to it (longitudinal rolls), but unstable for
certain oblique 3-D perturbations. A similar result has
been obtained by ref. [12] for plane Poiseuille flow.
This phenomenon is explained by the non-monotonic
effect of the viscosity, and leads to the behaviour of
two marginal stability lines (for 2-D disturbances)
crossing at certain points in the chart. One of these
lines is obviously a ‘dummy’.

Another example is plane Quette flow, or semi-
parabolic plane Poiseuille flow (rigid—free bound-
aries), which are linearly stable for all Reynolds num-
bers, Re, and wave number, §. This situation cor-
responds to the origin, S, = §, = 0, of the Rayleigh
number plane. Thus there exists a region surrounding
this point where the shear stratified flow is also stable
for all Re and f.

7. CONCLUSIONS

A first-order Galerkin method has been developed
for the stability study of double diffusive shear flows.
The method can be used, in general, for a qualitative
derivation and evaluation of the stability chart and as
an initial guess for a more accurate solution. Com-
parison to previous results obtained by a general
Galerkin technique has shown that the approximation
obtained by the present method is reasonable ; it was
therefore used for a detailed analysis of the stability
chart.

The stability chart in the Rayleigh number plane
S-S, was derived in this plane for various Reynolds
numbers, including the rest state (Re = 0). The stab-
ility regions for various Reynolds numbers, S7%,, and
for all Re, ST, have been obtained as well as the line
dividing between them, B,, which is the envelope of
the crossing lines Bg,. This envelope is tangent to the
monotonic and oscillatory static stability boundaries,
to axes S, and S, and to all the lines Bg,.

A domain in the parametric space has been dis-
covered, where the flow is stable for 2-D transverse
and longitudinal rolls, but unstable with respect to
general 3-D disturbances.

10.

11.

12.

13.

14.

15.
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APPENDIX: THE COEFFICIENTS AND PARAMETERS IN THE CHARACTERISTIC EQUATION (8)
AND THE STABILITY CRITERIA

The (3 x 3) matrices N and M in equation (7) are obtained after several integrations by parts as

Ny =

Ny = —<(D2¢)2+2ﬂ2(D¢)2+ﬂ‘¢’>—iR<ﬁ[(D¢)2+ﬁ2¢2]+

Ny =Ny =0;
M. =

5

where

—[K(D8)*+p%0%> +huj0}(l) +h,j0}(0)] —iRP (87>

%zDzﬁ> (A1)

Ny = <¢9/DT1>§ Ny =(—- 1)j+lﬂ2Sj<6j¢>
PO7Y; My ={(De)’+5¢>>; My=Mud, k=123;j=12
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The coefficients a; of the characteristic equation (8) are given by

Ny Ny Ny
“= _<Mn +M22 +M33
NNy NNy N3Ny NasNs, N 3N3,

MHMZZ M22M33 M!JMII—MZZMM—MIIMCH

N11N22N33 +N1I N23N32 N22 N13N31
M11M22M33 M11M22M33 MZZ M11M33

(A2)

a, =

ay = —

In order to construct the marginal stability lines, parameters b,, ¢, and L,, which appear in equations (9) and (10}, must be
expressed as functions of the elements of matrices N and M. For this we define
By = ~Re(Nu)/My; RD, = —Im(Ny)/ M,

; (A3)
SA; = (~1)V*"'"NyN/M;Myy;, k=1,23; j=1.2

and from equations (A3), (A2) and (A1)

by =B, +B;+B;, ¢;=R(D,+D,;+D,)

b, = B\B,+B,B;+B3B,—R*(DDy+D;D3+D3D,)~ 8,4, + 8,4,

¢ = R[B\(Dy+D3)+ By(D3+ D)+ By (D1 + Dy)] (Ad)
by = B\B,B,—~R*(B,D;D,+ B,D;D,+B3D,D;})~S,4,8,+85,4,B,

¢y = R(B,B,D;+B,B,D,+B.B,D,~R*D,D,D;—8,4,D,+S5,4,D,).

Finally, parameters L; are obtained from equations (A4) and (10) as

Ly =B\+B,+B;;, L,=>b[(B\+B,)(B,+8,)(B;+8))
—A4,8(B;+ B\)+ A4:5:(B3 + By)] + R*[B By(D, — Dy)*
+B,B3(D,~D;)* + B3 B,(D3—Dy)’]

Ly = L3L,—(2b,Ls+c,L,)?

L, = 4b,{B,B,B,~ A,8,B,+ 4,5,B,]1+ R*|B}(D,— D;)?
+B3(D3—D\)*+ B3(D—D,)* —2B\By(D;— D3) (D3~
—2B;By(D;— D) (D —D2)—2B,B,(D, — D) (D, — D3)]

Ls = —~R{D\B,B;[bi — B{+R*(Dy—D;)*|+ D, B;8,[b} - B}
+R*(D3s—D\)*+ D3 B, By[bi — B} + R*(D; — D1)*] - §,4,[D, (b} - BY)
—By(D\By+D;3By)+ S,4,(D, (b7 — B —B,(D, B, + D, By)]}.

(A3)

For the static case, with no initial flow in the undisturbed state, (R = 0), the parameters L, and L, are given by equations
(12), with coefficients

3:{f) = b,(B1+By)(B:+By) (By+8,); d4(8) =4b,B.B,B;
E(B) = b1 A (B3 +B)): Exn(B) = b145(B3+83) (A6)
Car(B) = 4b A\ B,y; £42(B) = 4b,A,B,.

Coeflicients E(#) which appear in equations (15) are obtained in the following manner. For identical temperature and
salinity boundary conditions A, = h,, = h,, Ay = A, = h, (see equations (4)). Introducing these relations together with the
choice of §,(z) = 8,(2) = 8(z) into equatnons (Al) and {A3), one obtains

= ()0 (2)>K0*(2)> }
(A7)

= Cil(Dg)* + §¢°] +0.5¢° D>/ (D) + 7).

Substitution of equations (A7) into equations (AS) yields, after some manipulations, the following expressions of coefficients
E(B) of equations (15) (see also equations {A4)) and the last of equations (15)

BB BB,
3 2, = 4ph3
‘»%:2.21;,31”}2 4b3 B,
o 1e b1BIBL . 4b1B,B, (A8)
3 =

By(B,+B,)*’ (D —D3)’By(B,+B,)’

Cocefficients #,, #,, 7 and y, in equations (23) and (24) for the static stability boundaries in the plane S-S, are obtained
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by introduction of equations (12) and (15) into equations (13)

)= (B'9*+287(Dg)’ + (D*¢)*H[<B?6* +(DO)*) + h,0°(1) + h6°(0)]
B2 9*><6%)
yo = [<B%6° +(D6)*> + h.6%(1) + h6°(0)] (B*9*+(D4)*) (A9)
6% (B*¢*+28*(Dg)* +(D*¢)*)
n, = <DT06)<0¢>/<07><d*>; j=1.2.
Note that y and y, depend on 8 but #; does not.

DIAGRAMME DE STABILITE DES ECOULEMENTS PARALLELES
CISAILLANTS AVEC MECANISMES DOUBLEMENT DIFFUSIFS—OBTENTION
APPROCHEE PAR UNE METHODE DE GALERKIN DE PREMIER ORDRE

Résumé— La stabilité d’une couche de fluide soumise 4 un écoulement cisaillant horizontal quelconque est
étudiée dans le cas de distributions verticales arbitraires de température et de salinité. L’analyse de stabilité
linéaire est utilisée pour étudier la stabilité sous I'effet de perturbations tridimensionnelles. On utilise une
méthode de Galerkin pour dériver ’équation caractéristique ; les conditions de stabilité sont obtenues ainsi
que les courbes de stabilité marginales. La méthode est appliquée dans le cas d’une distribution parabolique
de vitesse et des profils linéaires de température et de salinité. Le diagramme de stabilité dans le plan des
nombres de Rayleigh contient différentes régions stables et instables qui dépendent du nombre de Reynolds.
Les résultats sont comparés avec des résultats antérieurs obtenus par une méthode générale de Galerkin.
On trouve une région ou I’écoulement est stable vis-a-vis de perturbations transversales bidimensionnelles,
mais instable pour des perturbations générales tridimensionnelles.

DIE STABILITATSKARTE PARALLELER SCHERSTROMUNGEN BEI
DOPPELDIFFUSIVEN PROZESSEN—NAHERUNGSWEISE HERLEITUNG MIT
EINER GALERKIN-METHODE 1. ORDNUNG

Zusammenfassung—Es wird die Stabilitdt einer unendlich ausgedehnten Fliissigkeitsschicht, die einer
beliebigen horizontalen Scherstrémung und einer beliebigen vertikalen Temperatur- und Salzgehalts-
verteilung unterworfen ist, betrachtet. Die lineare Stabilitdtsanalyse wird verwendet, um die Stabilitit
unter dem EinfluB allgemeiner dreidimensionaler Storungen zu untersuchen. Um die charakteristischen
Gleichungen herzuleiten, wird ein Nherungsverfahren erster Ordnung nach Galerkin verwendet. Man
erhilt dann die Stabilititskriterien, und die Rand-Stabilititskurven koénnen ermittelt werden. Die
Methode wird an einem Beispiel mit parabolischer Geschwindigkeitsverteilung und linearer Verteilung
der Temperatur und des Salzgehalts angewandt. Es wurde herausgefunden, daB die Stabilitéits-
kurve in der Rayleigh-Zahlen-Ebene abhingig von der Reynolds-Zahl unterschiedlich stabile und
instabile Regionen beinhaltet. Die hier ermittelten Ergebnisse werden mit fritheren Ergebnissen verglichen,
welche mit einer allgemeinen Galerkin-Methode erhalten wurden. Es wurde ein Gebiet gefunden, in dem
die Stromung fiir zweidimensionale transversale Storungen stabil ist, jedoch instabil in Bezug auf aligemeine
dreidimensionale Storungen.

JUATPAMMA VCTOUYUBOCTH NAPAJUIEJIBHBIX CABUIOBBIX TEUEHWI C
VYETOM B3AUMHON JUO®Y3IUMU: NMPUBIWKEHHBIA PACYET METOJIOM
TAJIEPKHHA TIEPBOI'O IIOPAOKA

Amporaums—PaccMaTpuBaeTcs yCTORYHBOCTH 66CKOHEYHOro CJIOS XHAKOCTH PH MPOH3BOJILHOM IOpH-
30HTaJILHOM CIBHTOBOM TE€YEHHH H NPOH3BOJBHBLIX BEPTHKANbHBIX PacHpeleieHHAX TEMNEPAaTypel H
coneconepxanus. B obuieM ciydae TpeXMEpHBIX BO3MYILICHHH YCTOHYHBOCTL HCCJCHKYETCA B paMKax
nuHeliHo# Moaenn. Metoa IalepkiHa nepBOro nopsaka HCHOJB30BaH JUIA NMOTYYCHHS XapaKTepHCTH-
YeCKOrO YpaBHEHHS, 3aTeM YCTAHOBJIEHH YCJIOBHS YCTONYHMBOCTH M 0611acTh ee cymiecTBoBaHHA. [Ipume-
HeHHe MeTona [anepkHHa pacCMOTPEHO Ha MpHMepe ¢ NapaboJHYIeckuM pacIpelcicHHEM CKOPOCTH H
JIMHEHHEIMH pacnpefesiecHHAMH TEMHOEPAaTyphbl H collecolcpakaHas. JuarpaMMa yCTOHYMBOCTH B ILIOC-
KOCTH 4HMces Pajnes BKIIOYaeT pa3jiMyHble YCTONYMBHIE M HEYCTOWYHMBBIE OONACTH, ONpelesseMble
uyucyioM PeliHonbaca. Pesynbrathl HacTosmeif paGoThl CpaBHHBAIOTCK C JaHHBLIMH, OJTYYCHHBIMH paHee
o6umm MetomoM anepkuna. Hailmena o6sacts, B KOTOpPOH MOTOK YCTOMYHB B Cllydae MONEPEYHBIX
BO3MYLICHHHA, HO HEYCTOHYHMB K TPEXMEPHBIM BO3MYLICHHAM.



